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If the solution s(t) of the Cauchy problem (4.4) is constructed in an analytical or numerical form, 
all the kinematic and dynamic characteristics of the motions of the fluid are determined using the 
constructions in Sets 2 and 3 and formula (4.1). 
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THE THERMAL WAKE OF A STREAMLINED BODY? 

N. I. YAVORSKII 

Novosibirsk 

(Received 31 August 1990) 

The stationary problem of the thermal wake behind a body around which there is a flow of a viscous 

incompressible fluid is considered within the framework of the full heat-conduction equation. It is assumed 

that the solution of the corresponding hydrodynamic problem is known. In the case of the hydrodynamic 

problem, theorems of existence [l, 21 and uniqueness [l] have been proved and the leading term of the 

expansion [l, 31 at an infinitely remote point has been obtained together with estimates of the remaining 

terms [l, 41. Work mainly carried out within the framework of the boundary layer approximation [5] is 

concerned with the solution of the thermal problem. 

1. THE SOLUTION of the hydrodynamic problem can be represented in the form 

v(x)=vO+w(x), w=O(l/r), r=jxJ (1.1) 
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where v. is the velocity of the fluid at infinity and the body is assumed to be at rest. In this case. the 
heat-conduction equation has the form 

aAT - (vo, VT) = (w, VT) -G 
P 

3 
i 

+ 21” 
1 

(1.2) 

(a is the thermal diffusivity, cP is the specific heat capacity at constant pressure and 1, is the kinematic 
viscosity). Equation (1.2) includes a bulk source of heat evolution due to the dissipation of the 
kinetic energy of the motion of the fluid. 

The boundary conditions for Eq. (1.2) are the standard conditions. In particular, we assume that 
the temperature field T,(a) is specified on the surface of the body and that the temperature at 
infinity is equal to zero. By assuming that w = 0(1/r) in the neighbourhood of an infinitely remote 
point r = ~0, Eq. (1.2) can be approximated by the equation 

aAT,, - (v,,, VT) = -q (x) (1.3) 

where q(x) E W,’ is a specified heat source, which follows from (1.2). Approximation (1.3) is 
analogous to the Oseen approximation in the case of the hydrodynamic problem. Its justification 
follows from the estimates T = 0(1/r), VT = 0(l/r3’*) which are obtained below. It is verified by 
direct substitution that the fundamental solution of the homogeneous equation (1.3) is 

G (x -Y) = -& f+ 

h=lvo(/a, s=r-nn,~(x-y), r=lx-y(, n,=v(&%)J 

Using Green’s function G (x - y), Eq. (1.3) can be represented in the integral form 

(1.4) 

T,(x) = - 
s G (x-Y)q(Y)d3y - 
I3 

- u v,jT * - 
z 

+)C(x-Y, + aT,$- 
j 

, G(x-Y)] nods (1.5) 

in which the thermal flux on the surface of the body C: &To/&z is determined as the solution of the 
corresponding Fredholm integral equations [6] and E is the volume occupied by the fluid. 

By using the estimates of the velocity derivatives for the streamline problem [4], it is possible to 
showthatq(x)ac((xI+ro)-3, where r. is the characteristic dimension of the body around which the 
flow occurs. It follows from this that the volume integral in (1.5) exists for any stationary 
circumfluence problem. 

It is assumed that the surface Z satisfies the Lyapunov conditions. The integral with respect to an 
infinitely remote surface is equal to zero. This can be shown using the estimates G = 0(1/r), 
VG = 0(l/r3’*) which follows from (1.4) and the conditions of the boundedness of the thermal flux 
at infinity 

v,,,T - a $ 
f 

(1.6) 

for a sphere SR of radius R, using the boundary condition T(a) = 0. The fundamental solution of 
this problem G(x) also turns out to be useful when investigating the full equations of convective 
heat transfer (1.2). 

On inverting the operator on the left-hand side of (1.2) using G(x- y), we arrive at the integral 

equation 
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T (x) = 1 T~~~G(~--y)d~~-sG(x-_y)q(~)~'~- 
E E 

- $K VA--a By, 
x)G(x-y) + UT, + G(x-y)] n,dS (1.7) 

A doubly differenqiable bounded solution of Eq. (1.7) is sought which possesses a bounded 
derivative with respect to the normal to the surface of the body. The boundedness of the 
temperature T, and the thermal flux aaT/an on C ensures the existence of the surface integral. 

The first volume integral on the right-hand side of (1.7) exists by virtue of the estimates 
] w(x) 1 s C( 1 x I+ r0)-3 [4], the boundedness of the temperature 1 T( d C and the form of G(x - y) 
[4]. The second volume integral is identical to the analogous-integral in (1.5) and, consequently, also 
exists. As in the preceding case, the integral over an infinitely remote surface is equal to zero subject 
to the condition of the boundedness of the total thermal flux on it 

x, = 
$ [( 

v,T -a aazT 
R 

+,as,<c<o, R+oo 

Equation (1.7) is a Fredholm integral equation of the second kind. Without going into details, it 
may be assumed that Eq. (1.7) has a generalized solution for each solution of the hydrodynamic 
problem wi, q, if the surface of the body 2 satisfies the Lyapunov conditions. The generalized 
solution T is determined in a similar way to that used in the case of the velocity field in the sense that 
(cp, LT) = (cp, q) for each function cp E Cam and L is the operator of the convective heat-conduction 
equation L = (v, V) - aA. The proof is essentially the same as the analogous proof for the Oseen 
equations [l, 21. In particular, theorems analogous to (2.6) and (2.7) in [l] hold. These assert that, if 
q E Cr+a, 1-20, the solution T(x) E Cr+2ta and, if the surface of the body CE Cr+a, the 
temperature on the boundary TE C lta and the function q is bounded close to C then VTE Co+” in a 
closed (external) neighbourhood of C and T(x)+ T, on Z. 

Let us consider the expansion of the solution (1.7) at an infinitely remote point. The surface 
integral in (1.7) can be represented in the form of a multiple expansion 

A(x) = c$ [(qT -ae)G(x-y) + aT &G(x--y)] n&3 
c 

(1.8) 

(1.9) 

xc0 = njdS R-ma 

The expansion (1.9) is obtained using an expansion of Green’s function G(x - y) in a Taylor’s 
series with respect to y which is absolutely convergent if the magnitude of 1 x) is sufficiently large 
(y E C which is a bounded surface). Let us now consider the volume integral 

N(x) = j Tw&G(x-y)dSy 
E 

(1.12) 
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We will first present the estimate 

I%~ [G+#Flg r”.(:+hs) 

which is obtained from (1.4) taking account of the relationships 

psp=2+, jGP<+,, s>o 

which can be directly verified. The solution of the hydrodynamic problem has the estimate ]4] 

I w I < CT’ (1 + as)-‘+e, 0 < e \< l/s, (I = l/Z I vo I/Y (1.14) 

Let us also assume that 

i T (X) ] < Pa, C5 > ‘la 

In this case, Assumption 2 from [4] which we shall formulate 
applied to (1.12). 

The convolution 

i(x) = 1 ~(X-Y}~(Y)~~~ 
R’ 

subject to the condition 

(1.15) 

in the following manner can be 

t f (x) 1 < (OT + I)-- (us + I)-1+e, a > l/z* 0 < E < ‘I, 

lw(X)I\<r-t’t(~s+l)-l,~= jxI,s=r--n,.x 

has the majorant 

1 J (x) 1 < CP-‘ix b (ar) + 11, err > 1 

Using this assertion from (1.12) and taking account of the estimates (1.13)-(1.15), we get 

J N (x) 1 < CIP+~ Iln (cw) + 11 (1.16) 

It is seen from expansion (1.9) and expression (1.6) that the surface integral 

A (x) = 0 (l/r) (1.17) 

It follows from (1.16) that the volume integral N(x) is negligibly small when rj 03 with respect to 
the surface integral A(x), Taking account of expansion (1.9) in the case when there is no bulk 
thermal source (4 (x) = 0), we write the asymptotic form for the temperature in the form 

T (x) = -XC (x) + 8 (x), 0 (x) = 0 (r-‘/l In (or)) (1.18) 

since, in accordance with (1.17), the exponent fy in estimate (1.15) is equal to unity which, in turn, 
follows from (1.7) taking account of (1.8), (1.12), (1.16) and (1.17). 

We note that condition (1.15) can be obtained, using the methods in [7], from the condition of the 
boundedness of the Dirichlet integral for the temperature (see the Appendix) 

5 
(VT)%% < 60 (1.19) 

E 
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This condition has a clear physical meaning: relationship (1.19) in conjunction with the 
boundedness of the energy dissipation ensures the boundedness of the entropy production [8]. 

If account is taken of the bulk heat evolution q(x) in the form of the dissipation of the kinetic 
energy of the fluid, the asymptotic representation (1.18) does not undergo any appreciable changes 

T (x) = -(x + D) G (x) + 8 (x), 8 (x) = 0 @-‘I, In (err)) 

D = g (x)&t!‘= + 
S s( -$+ .) 'dsz <oo 
E ‘E ’ 

i$ 
1 

(1.20) 

Expression (1.20) can be proved by applying the corresponding estimates for do/ax and 

G(x-y)-G( ) d x an using Assumption 2 of [4]. It can be shown from the heat-conduction equation 
(1.2) that 

x-/-D=x,= (1.21) 

Hence, the leading term in the temperature expansion (1.20) is determined by an exact 
conservation integral, that is, by the total heat flux at infinity and, at the same time, according to 
(1.4) and (1.20) 

T (x) = 0 (l/r) (1.22) 

2. Let us now consider a turbulent thermal wake. We shall start off from the averaged convective 
transport equations 

aAT - (v,,, VFj = (u, -VT) + (w’, VT’) - Q (x) 

u (x) = w (x, t),, w = u + w’, T = T + T’ (2.1) 

Q(x) =$ ( !%+zL) , 
Equation (2.1) differs from (1.2) in that it contains an additional “heat source” (w’, VT’) which 

arises on account of the presence of turbulent thermal stresses. These stresses can be obtained from 
supplementary equations in the pulsations of w,’ and T’. However, in order to derive the asymptotic 
estimates, it suffices to confine ourselves to certain general assumptions regarding the asymptotic 
behaviour of wi’T’. 

On inverting the linear operator on the left-hand side of (2.1) using the fundamental solution 
G (x - y) (1.4)) we arrive at the equation 

~(x)=$=j+G(x-y)d3g-SG(x-y)Q(y)dJy- 
E j E 

- v,T*-lE a, 
f 

G(x-y) + aT+G(x-y) n,dS i I (2.2) 

The existance of the integrals in Eq. (2.2) is doubtful in view of the unknown asymptotic 
behaviour of the function T’Wj’. However, it is well known [9] that a spatial wake becomes laminar 
at a distance from the body and, moreover, that this occurs at a finite but, perhaps, fairly large 
distance. By virtue of the assumed boundedness of the field quantities occurring in (2.2), this means 
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that one can use the estimates for laminar flow (Sec. 1) in the upper limit in the volume integrals 
and, consequently, it may be assumed that these integrals also exist in the case of a turbulent flow 
behind a uniformly moving body. 

Confining ourselves to these qualitative arguments (a more rigorous proof requires the solution of 
the problem of stability with respect to arbitrary spatial perturbations of the laminar hydrodynamic 
and therma wake), let us consider the volume integral 

1 (x,, t) = 1 Tq -+G (x - y) dsy 
E f 

(2.3) 

By using the scheme for the proof of the asymptotic behaviour of a hydrodynamic wake in [7], in 
which time is considered as a parameter, from the condition for the boundedness of Dirichlet type 
integrals 

s (VTyd~x <cc,, 
E 

$ .gi_ + _$ a LPX <CT, 
E ( I i 1 

Cl, c, = const < 00 (2.4) 

it is possible to obtain the estimate (see the Appendix) 

I 1 (x, t) I < C*F* a > v3, c, = const < 00 (2.5) 

Conditions (2.4) are the natural physical requirement of the boundedness of entropy production 
in the case of turbulent motion in a wake. From (2.5), we get 

(2.6) 
The contribution to the volume integral from a source Q(x) together with the surface integral in 

(2.2) can be estimated in the same way as in Sec. 1, to be 0(1/r). Hence, we have the estimate 

I T (x) I < CP, 1 > CL > VS, C = const (2.7) 

Simple evaluation considerations for a turbulent thermal wake yield QL = 2/3. The result follows 
from the condition that the convective thermal flux is specified as Jy=pz+,7Z2 = const and the 
estimate dS/dz= T/To for the width of the thermal wake 6 which propagates along the z-axis, when 
$=_P, . 7”- z-u3 

The occurrence of a memory of the shape of a streamlined body with a hydrodynamic turbulent 
self-similar wake was pointed out in the experimental papers [lo, 111. It follows from what has been 
said above that recollection of shape can only hold when CI . (1 in (2.6) and (2.7). If ol> 1 in (2.5) and 
(2.6), then the self-similar turbulent wake will be determined by the total heat flux as was pointed 
out in Sec. 1. We note that, in the domain of the limiting asymptotic behaviour of the distant wake, 
memory of shape must not be a consequence of the flow becoming laminar [9] and the results of 
Sec. 1 for a laminar flow, according to which the leading term of the expansion is determined by a 
single conservation integral, that is, by the total thermal flux. 

Next, by using Assumption 2 of [4] which has been formulated in Sec. 1, it is easy to investigate 
under which conditions memory of the shape of a body, around which a flow occurs with a turbulent 
thermal wake, can arise. 

Let the estimate 

hold. 

1 Tluj 1 < Cr-l-b, u > 1/2, C = const (2-S) 
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Then, 

1 I (x) 1 < Cr-fi-“~ [In (or) + 11 (2.9) 

It is obvious from this that the condition p > l/2 precludes the possibility of a shape memory since 
the leading term in the expansion is determined by a surface integral of the order of l/r and depends 
solely on the total thermal flux. An additional necessary condition for the possibility of a memory of 
the shape of a body around which a flow with a turbulent thermal wake occurs can be obtained from 
relationships (2.8) and (2.9) in the form 

I Tw I IT*‘s > c > 0 (fl < l/J (2.10) 

which represents the need for a sufficiently slow decay (not faster than r-3’2) of the turbulent 
thermal stresses in the domain of intermediate asymptotic behaviour of the self-similar turbulent 
thermal wake. Relationships (2.10) can be used in the experimental investigation of the possibility 
of the occurrence of a memory of the shape of a body around which a flow occurs in the case of a 
turbulent thermal wake. 

APPENDIX 

We will show, following [7], that, if the temperature field belongs to the Dirichlet class (1.19), the solution of 
the stationary thermal problem has the estimate (1.15). The proof in the case of the hydrodynamic problem [7] 
can almost be transferred word-for-word to the thermal problem and we shall therefore confine ourselves to the 
formulation of the corresponding theorems while indicating the necessary changes which are however 
unimportant for the proof. 

Consider the operator 

h, (0) = s +G(~--Y)~~(YV’Y 

ha m 

in the space L’(R3). We shall subsequently use the notation [7] 

IfI D, 7 = (1 I f (x) I’ d31)“’ 
D 

and, if d = R3 or D = E, simply write Ifr /. The xl-axis is directed along the circumfluence velocity v,, 

Proposition 1. If m = 1, then h, is an operator from L’ into L’ and 

I~,wlrd~rlcptl~ l<r<4 

This assertion, as well as its proof, are completely analogous to supposition 1 from [7]. It should also be 
noted that the Fourier transformation of aG/ax, 

has the form 

g, (u) = tu, / (u* - 21hu,) 

whence the required assertion follows using the results of Mikhlin and Lizorkin cited in [7]. 
The following assertions [7] are not subject to any changes. 
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Proposihm 2. (A special case of Sobolev’s theorem.) Let the function opt C’(R’) be absolutely 
continuous with respect to each of the variables subject to the condition that the remaining variables take 
arbitrary fixed values and let it have a finite Dirichlet integral 1 Vcp /?< m. Let us further assume that ~(x ) --+O 
when 1 x (-+ m. The inequality / ‘p l,SA / VP I2 then holds, where A is an absolute constant. 

ProPosition 3. Let cp Satisfy the conditions of Proposition 2 and, furthermore, suppose cpx, /“KM, where 
1 <r<2. 

Then 

Using Proposition 2 and the possibility of a finite continuation of the temperature field in the neighbourhood 
of the surface Z [the temperature field within the body can, for example, be found by solving the Laplace 
equation with the corresponding boundary conditions for T,(s)], we find 1 Tie< 00. 

Proposition 4. The relationship / Z$< ~0 holds. 
This assertion is completely analogous to Proposition 4 of [7] (1 v 4 < a). The proof is based on an analysis of / 

(1.7). The derivatives with respect to X, are investigated separately for the volume and surface integrals on the 
right-hand side of (1.7). It can be directly verified that all of the relationships in the proof of [7] remain valid on 
making the substitutions Htj--+ G and v-+ T whereupon Proposition 4 follows. 

Proposition 5 of [7] refers to the integrability of the pressure and is not used in our case. Three propositions 
follow next in [7] which are directed towards the proof of the assertion that j v jr < 00 if r< 4 but is fairly close to 
four. Auxiliary constructions [7] are used for this and, in particular, a truncated fundamental solution is 
introduced which differs from zero in the immediate neighbourhood of the wake. This part of the paper 
contains quite long proofs, the reproduction of which, while making small changes, is hardly sensible. We 
merely note that the proofs substantially rest upon an integral equation of the type of (1.7). By comparing Eq. 
(1.7) with the corresponding equations (1.15) and (2.9) of [7], the great similarity between them can be noted 
and it can be shown that, in the case being considered, the scheme of the proof due to Babenko [7] remains 
valid and, here, it suffices to make the substitutions H,+G and v + T. This is founded in the identical 
functional properties of the fundamental solutions H,j and G, by their identical asymptotic behaviour, together 
with the first-order derivatives and the identical structure of the corresponding integral equations. 

Propo~irion 9. The inequality / T/,< 00 holds for all r>2. 

Proposition 10. Let 
‘p (8 = maxl,l>,e, I T (xl I, 5 > 1 

There then exists a t* > 0 such that 

cp (8 < (8/~)“* for E > E*, B = Y, - e, 0 < a 4 1. 

The proof is a word-for-word repeat of the proof of propositions 9 and 10 of [7] with the substitution v-+ T. 
The estimate 

I T (x) I d c I x rat a 2 2/3 

can be obtained from this, and inequality (1.15) is thereby satisfied. 
Since Babenko’s proof [7] rests solely on a series of estimates of integral operators and only makes use of 

fairly general properties of the solution being estimated, his scheme can be applied to a broad class of problems 
where there are analogous operators. In particular, apart from the stationary thermal problem of the flow 
round a body, it is possible to treat turbulent thermal and hydrodynamic wakes. It would be expected that 
estimates of integral operators having the same fundamental solution as kernels would not essentially change. 
Here, it is convenient to carry out time averaging or averaging over an ensemble in the estimates which have 
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already been made where time is treated as a parameter. By successively carrying out this reasoning, we arrive 
at an estimate of the mean temperature in the form of (2.7) which is also valid in the case of a laminar trail but, 
unlike in the laminar case, proposition 2 of [4] can no longer be used here. This is associated with the fact that 
the thermal stresses wj’T’, just like the Reynolds stresses Wi’wi’, cannot decay according to the required law 
=r-a, a.>3/2. Hence, in the turbulent domain of a distant wake, the contribution of the volume integral to 
(2.2) cannot be small. We cannot rule out the possibility that the presence of a memory of the shape of the body 
around which the flow occurs in the case of a hydrodynamic trail is, in fact, associated with this. 
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